Multi-Task Learning Model Based on Multi-Scale CNN and LSTM for Sentiment Classification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

YNU-HPCC at SemEval 2017 Task 4: Using A Multi-Channel CNN-LSTM Model for Sentiment Classification

In this paper, we propose a multi-channel convolutional neural network-long shortterm memory (CNN-LSTM) model that consists of two parts: multi-channel CNN and LSTM to analyze the sentiments of short English messages from Twitter. Unlike a conventional CNN, the proposed model applies a multi-channel strategy that uses several filters of different length to extract active local n-gram features i...

متن کامل

Combination Model for Sentiment Classification Based on Multi-feature Fusion

Sentiment classification is a way to analyze the subjective information in the text and then mine the opinion. This paper focuses on the word level sentiment classification. A combination model for word level sentiment classification based on multi-feature fusion is proposed in this paper. Firstly, different combinations models of various features are gotten and the Naive Bayes classifier is tr...

متن کامل

Personalized Microblog Sentiment Classification via Multi-Task Learning

Microblog sentiment classification is an interesting and important research topic with wide applications. Traditional microblog sentiment classification methods usually use a single model to classify the messages from different users and omit individuality. However, microblogging users frequently embed their personal character, opinion bias and language habits into their messages, and the same ...

متن کامل

Dimensional Sentiment Analysis Using a Regional CNN-LSTM Model

Dimensional sentiment analysis aims to recognize continuous numerical values in multiple dimensions such as the valencearousal (VA) space. Compared to the categorical approach that focuses on sentiment classification such as binary classification (i.e., positive and negative), the dimensional approach can provide more fine-grained sentiment analysis. This study proposes a regional CNN-LSTM mode...

متن کامل

Deep Model Based Transfer and Multi-Task Learning Deep Model Based Transfer and Multi-Task Learning for Biological Image Analysis

A central theme in learning from image data is to develop appropriate representations for the specific task at hand. Traditional methods used handcrafted local features combined with high-level image representations to generate image-level representations. Thus, a practical challenge is to determine what features are appropriate for specific tasks. For example, in the study of gene expression p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.2989428